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The communication bottleneck

= Architectural issues

= Traditional shared buses do not scale
well — bandwidth saturation

= Chip IO is pad limited
= Physical issues

= On-chip Interconnects become
increasingly slower w.r.t. logic

= |Os are increasingly expensive

= Consequences
» Performance losses
= Power/Energy cost

= Design closure issues, respins or
infeasibility
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New architectures and design
methods are required!
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3D Integration roadmap

Coming to the rescue of communication starved 2D ICs
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Through-silicon vias are at the technology bleeding edge today
Industry interest is growing: http://www.emc3d.org/

TSV market outlook

3D IC Wafers breakdown [Yole07]
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Less than 50,000 (est.) wafers to be fabbed with TSV in 2007




3D TSV-based Integrated Circuits

s Promises

= Reduce average length of on-chip
global wires

= Increase the number of devices Bight Stacked Chips [WSP|
reachable in a given time budget

= Greatly facilitate heterogeneous
integration (e.g. logic-DRAM stacks)

m Challenges
= Modeling and characterization
= Reliability

= Architecture, design & design
technology implications

Samsung Wafer Stack
Package (WSP) memory

Immature in products — significant effort in understanding
architecture, design technology, system implications

TSV Technology Options

= Viafirst: TSVs realized before CMOS or before BEOL process
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= Vialast: TSVs realized after BEOL or after bonding process
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Understanding TSV technoology

Via SiO; Bulk Si

SOI fabrication process Bulk Si
fabrication process |

Modeling Resistance

= With typical vertical via parameters,

£ _ 1.18mQ/ um
O

= ~50 times smaller than for a typical 1.5mm
Metal 8 horizontal wire in 0.13um
technology




Modeling Capacitance
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= Capacitance matrix summarizes ground capacitance and
coupling effects
= Bulk Si: around 23fF = 11 inverter loads (mostly towards ground)
= SOI: around 10fF = 5 inverter loads (mostly towards other vias)

= For a whole via, capacitance is ~10 times smaller than for a
typical Metal 2/3 horizontal wire of 1.5mm in 0.13um

TSV performance

= Delay is given by combination of
parasitics
= Horizontal wire to via base
= Via delay (includes R of bases)
= Horizontal wire from via top
= Load

= For a whole via of 50um, delay is
16/18.5ps (SOI/bulk)

= For a 1.5mm horizontal link, delay is
around 200ps




So far so good, but...

= >10um pitches seem to be realistic

= Not all TSVs can be used for signals
= Power supply, clock, thermal vias

TSV reliability losses

= Main failure mechanisms (fabrication)
= Misalignment
= Voids formation during Bonding phase
= Dislocation and defects of Copper grains
= Oxide film formation over Cu interface

= Partial or full Pad detaching due to thermal
Stress

= Thermal dissipation is much harder in 3D
stacks, thereby further increasing the risk of
temperature-related failures

7/3/2008 Loilgor igor.loi@unibo.it




TSV yield

120% [Miyakawa HRI07]
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Summing up...

Good power and speed
Area overhead is significant
Reliability not ideal (fabrication and aging)

Synchronization is hard (skew minimization
across layers)

Therefore:
= Cost and design effort are not trivial
= Not just another dimension for wiring (as of today)
= Need a sistematic way to deal with non-ideality

A medium-term vision




Do We Really Need It?

10000 PRAM bandwidth _ | = Multi-core logic performance is back
on track, but ...
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= Multi-core are bandwith-hungry:

= Limited caches ‘
= Multi-threading

+ Single Core
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4+ Quad Core
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Caches to reduce bandwidth requirements?

1T If we want to hold BW instant, oT

. what size of C do we need ? .

BW BW

2C--—->2B 2X4C--->2X(1/2)B
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BW  BW BW/2 BW/2

Doubling threads at constant bandwidth requires 8x cache!




Scaling #cores with constant BW

Using Cache size to accommodate
increasing thread traffic is VERY

i Off Chip _ _
-.:’- ;<E> Memory expensive — using BW can be cheaper!!

__________________________

2x increased traffic drives 8x cache
size (constant memory bandwidth)

Off Chip
Memory

4x increased traffic drives 64 x cache
size (constant memory bandwidth)

What about Embedded MPSoCs?

Ext DRAM
Ext DRAM
Tr_r 100 to 400ns
i l 100 to 400ns i delay
—— delay Mem Ctrl
Mem Ctrl
- B TT ,ﬂ 1000 to 2000ns
On-chip | 10 1o 40 Mem access | delay
SRAM o 40ns
dela concentrator
’ v 9 10 to 40ns
10 to 40ns J
delay I"J: delay
HWIP HW IP
= [ HWIP

Total Access Latency
10 to 40ns 110 to 440ns 1110 to 2440ns
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Frame rate constraint is getting too tight!
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3D-IC Technology to the Rescue!

. . Die MCP
High-end packaging roadmap
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= Assume a 10um TSV-pitch

= Area of a 1024-bit bus: 0.32mm?2. Die-to-die vias%

= 1cm? chip = over three hundred of these buses

DRAM (Thinned die) EE:‘“&H‘:EJ

Is Bandwidth All We Need?

Penalty for handling a cache miss:

Miss Access Processor
Events

Bus tﬁ%ﬂ;‘g MM Time

Events Rest of Cache Line
-<—Trailing Edge
First Last
Data Data
Miss Penalty = Leading Edge + Effects(Trailing Edge)

Where
Trailing Edge Effect = (Line Size / Bus Width) x (F(HP) / F(Bus))
Bus Utilization = (Trailing Edge / Intermiss Distance)

But what about leading edge effects?




Revisiting DRAM organization?

DRAM Cells
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A Technoloaical Realitv Check...

TUUUUU—

i Sweet Spot

10000 |— Chip Performance is limited by global |

paths at corefunit level. For significant
performance improvement, 3D integratiol
at core or unit level is desirable.

=
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3D Design partitioning Level




A long-term vision

3D Network On Chip

s Module-level
interconnect

= ArchiNedaigpproach to deal with 3D
scalable: more
nodes, maa erconnem
bandwijglt
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Developing Mesochronous Synchronizer to Enable 3D NoCs




Reference Switch Architectures

= Based on the xpipes NoC library
= STALL/GO flow control

Impact on Max Freguency
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= ACK/NACK: critical path is within the switch
module, no difference to be noticed

= STALL/GO: critical path includes the link, up
to 50 MHz frequency gain




Reference NoC Design Flow

Codesign, User Constraints: 4'P&R, pOSt-rOUtIng
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Area, power characterization

Example Topology

Rle

= 2x3 g-mesh is split into two 1x3 layers

= Layers are connected by vertical vias




Bottom Layer Layout

= Vertical links are laid out as floorplan obstructions

Area Overhead of TSV Bundle

= For a vertical bidirectional link, needed wires:

2. (5+ DataWidth)

= At minimum diameter/pitch, each via’s overhead is
64 um2 (12 NAND2 equivalents)

= For a 6x6 xpipes switch with 28-bit DataWidth,
overhead is
= ACK/NACK: 6% of switch area
= STALL/GO: 9% of switch area (switch is smaller)

= But since frequency is higher, buffering could be
reduced (saving area)




3D NoC Test Chip

Taped out in february — Joint project IMEC — INOCs - UNIBO

Top Layer
Memory

Via Control/Readout
Pads

TSV bundle

Traffic Generator
Bottom Layer

Insight to Be Gained

Demonstrator: 3D NoC
= If functional tests are passed

Electrical performance of 2D vs. 3D interconnects

= By injecting 2D-only or 3D traffic, and pushing frequency
until still operational

Yield analysis / redundancy policies for 3D vias
= By querying via status by JTAG

Skew analysis for 3D clock distribution

= By skewing layer clocks on purpose and checking max
achievable operating frequency

Power analysis of 3D vias / NoCs
= By monitoring power in continuous operation mode

February 2008 CONFIDENTIAL - 34




Design Challenges

Mesochronous Synchronization

Top Layer | Bottom Layer
]

44448

Switch Top Switch Bottom

vvvv




Performance Analysis

= Low-overhead mesochronous synchronizer

= Tested with 32bit flit width: small area overhead:
= RX Synch - 3200um?
= TX Synch - 700 um?

STALL GO

RX

/ X

W Tsv

[ RX Synchronizer

sequential

Il RX Synchronizer
combinational

7] TX Synchronizer

sequential

[] TX Synchronizer

combinational

B Switch sequen-

tial

[T Switch combina-

tional

= Due to the introduced latency
additional buffer resources are
needed to avoid data loss or
throughput penalty.

= Stall Go require at least two
additional buffers

Area (um?)

Cost for a baseline composed of 2 switch 5x5
TSVs obstruction, mesochronous synchronizers 0
and flow control support

Synchronous Mesochronous

37

Reliability Enhancement

TSV check on reset | i | : i | T i I I
| | | |

Control use dedicated |
Vias in order to

establish which vias are
corrupted.

If 1, 2 and 3 TSVs are
OK, the control set the
enable signal set_to and
set_from: broken path
are skipped!

Pads routing shift as
show in the figure

Need to define The
handling protocol during
the TSVs check

fel_to

DjF




3D NoC Topology Synthesis

User
objectives

Communication
characteristics 3D Specs Technology
constraints

=S|
T

NoC
Area modeII Topology
SUESE
includes:

! Floorplanner
Power models NoC Router
3D
SUNFLOOR

Joint work with EPFL & INOCS

Topology Synthesis Algorithm

s Features:

= Deadlock removal (routing and message-dependent)
intra and inter layer

= Floorplan of cores, switches, NIs layer by layer
= TSV alignment across layers is yet to be done

= Meet frequency, TSV constraints
= Design Trade-offs
= Vary number of TSVs - performance Vs yield analysis

= Effect of core to layer assignment on communication
= Effect of floorplaning on communication




Effect of TSV Constraint

Normalized with respect to unbounded resources case (which needs 13)

1.1
1.08
1.06
1.04
1.02

BN

Normalized Latency

0.98
0.96

TSVs I}ltr)lks used 13

Links have 32bit payload

Effect of NoC Frequency

# of TSV links
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NoC Frequency (MHz)

= With NoC frequency increase

= Fewer links are needed to support same bandwidth > fewer
TSVs needed

= Smaller, more, switches are needed - more TSVs needed
= Trade-offs to be explored




Case Study

= 36 core multi-media benchmark

= Mapped onto 3 layers

...............
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Design Floorplan

Layer 0 Layer | Layer 2
BCore ONI  ©Switch ®Hip-Flop

Each core is assumed to be of dimension 1Immx1mm

Comparison with 2D NoC
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Switch count
= Number of switches increases, total | =Longer wires in 2D, higher NoC
power increases power consumption
= More Switch-to-switch wires = Studied several benchmarks for 2D
_ vs 3D comparisons
= More switch power, as more
hops traversed = 32% lower NoC power in 3D
» 15% lower NoC latency in 3D




Wire Length Distribution
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3D design has many shorter wires

Conclusions

= 3D IC revolution is happening
= "Evolutionary revolution”

= Adoption in high volumes will
be slow
= Technology needs time to mature Sensor
= Cost needs to come down

Architectural and circuit Pr°°ess°r/ ;

solutions can help Memory

= 3D-NoC could become a strategic
technology

[IMEC]
I ha Yo u ' The future...




