3D-MPSoCs: architectural and design technology outlook

Luca Benini DEIS Università di Bologna Ibenini@deis.unibo.it

The communication bottleneck

- Architectural issues
 - Traditional shared buses do not scale well – bandwidth saturation
 - Chip IO is pad limited
- Physical issues
 - On-chip Interconnects become increasingly slower w.r.t. logic
 - IOs are increasingly expensive
- Consequences
 - Performance losses
 - Power/Energy cost
 - Design closure issues, respins or infeasibility

New architectures and design methods are required!

3D Integration roadmap

Coming to the rescue of communication starved 2D ICs

Through-silicon vias are at the technology bleeding edge today Industry interest is growing: http://www.emc3d.org/

TSV market outlook

Less than 50,000 (est.) wafers to be fabbed with TSV in 2007

3D TSV-based Integrated Circuits

- Promises
 - Reduce average length of on-chip global wires
 - Increase the number of devices reachable in a given time budget
 - Greatly facilitate heterogeneous integration (e.g. logic-DRAM stacks)
- Challenges
 - Modeling and characterization
 - Reliability
 - Architecture, design & design technology implications

5

Samsung Wafer Stack Package (WSP) memory

Immature in products – significant effort in understanding architecture, design technology, system implications

TSV Technology Options

Understanding TSV technoology

Modeling Resistance

$$R = \frac{\rho \cdot l}{\sigma}$$

With typical vertical via parameters,

$$\frac{\rho}{\sigma} = 1.18m\Omega/\mu m$$

 ~50 times smaller than for a typical 1.5mm Metal 8 horizontal wire in 0.13µm technology

Modeling Capacitance

- Capacitance matrix summarizes ground capacitance and coupling effects
 - Bulk Si: around 23fF = 11 inverter loads (mostly towards ground)
 - SOI: around 10fF = 5 inverter loads (mostly towards other vias)
- For a whole via, capacitance is ~10 times smaller than for a typical Metal 2/3 horizontal wire of 1.5mm in 0.13µm

TSV performance

- Delay is given by combination of parasitics
 - Horizontal wire to via base
 - Via delay (includes R of bases)
 - Horizontal wire from via top
 - Load
- For a whole via of 50µm, delay is 16/18.5ps (SOI/bulk)
- For a 1.5mm horizontal link, delay is around 200ps

So far so good, but...

- >10um pitches seem to be realistic
- Not all TSVs can be used for signals
 - Power supply, clock, thermal vias

TSV reliability losses

- Main failure mechanisms (fabrication)
 - Misalignment
 - Voids formation during Bonding phase
 - Dislocation and defects of Copper grains
 - Oxide film formation over Cu interface
 - Partial or full Pad detaching due to thermal Stress
- Thermal dissipation is much harder in 3D stacks, thereby further increasing the risk of temperature-related failures

TSV yield

Clock Distribution in 3D

Summing up...

- Good power and speed
- Area overhead is significant
- Reliability not ideal (fabrication and aging)
- Synchronization is hard (skew minimization across layers)
- Therefore:
 - Cost and design effort are not trivial
 - Not just another dimension for wiring (as of today)
 - Need a sistematic way to deal with non-ideality

A medium-term vision

Do We Really Need It?

Caches to reduce bandwidth requirements?

Doubling threads at constant bandwidth requires 8x cache!

Scaling #cores with constant BW

What about Embedded MPSoCs?

3D-IC Technology to the Rescue!

Is Bandwidth All We Need?

Penalty for handling a cache miss:

But what about leading edge effects?

Revisiting DRAM organization?

A Technological Reality Check...

A long-term vision

3D Network On Chip

- Module-level interconnect
- Arching Calapproach to deal with 3D scalable: more nodes, more nodes, more bandwidth

Developing Mesochronous Synchronizer to Enable 3D NoCs

Reference Switch Architectures

- Based on the xpipes NoC library
- STALL/GO flow control

Sende

(N)ACK

Receiver

Impact on Max Frequency

- ACK/NACK: critical path is within the switch module, no difference to be noticed
- STALL/GO: critical path includes the link, up to 50 MHz frequency gain

Reference NoC Design Flow

Example Topology

- 2x3 q-mesh is split into two 1x3 layers
- Layers are connected by vertical vias

Bottom Layer Layout

Vertical links are laid out as floorplan obstructions

Area Overhead of TSV Bundle

- For a vertical bidirectional link, needed wires: $2 \cdot (5 + DataWidth)$
- At minimum diameter/pitch, each via's overhead is 64 µm² (12 NAND2 equivalents)
- For a 6x6 xpipes switch with 28-bit *DataWidth*, overhead is
 - ACK/NACK: 6% of switch area
 - STALL/GO: 9% of switch area (switch is smaller)
- But since frequency is higher, buffering could be reduced (saving area)

3D NoC Test Chip

Taped out in february – Joint project IMEC – INOCs - UNIBO

Insight to Be Gained

- Demonstrator: 3D NoC
 - If functional tests are passed
- Electrical performance of 2D vs. 3D interconnects
 - By injecting 2D-only or 3D traffic, and pushing frequency until still operational
- Yield analysis / redundancy policies for 3D vias
 - By querying via status by JTAG
- Skew analysis for 3D clock distribution
 - By skewing layer clocks on purpose and checking max achievable operating frequency
- Power analysis of 3D vias / NoCs
 - By monitoring power in continuous operation mode

Design Challenges

Mesochronous Synchronization

Performance Analysis

- Low-overhead mesochronous synchronizer
- Tested with 32bit flit width: small area overhead:
 - RX Synch \rightarrow 3200 μ m²
 - TX Synch \rightarrow 700 μ m²
- Due to the introduced latency additional buffer resources are needed to avoid data loss or throughput penalty.
- Stall Go require at least two additional buffers

Cost for a baseline composed of 2 switch 5x5 TSVs obstruction, mesochronous synchronizers and <u>flow control support</u>

37

Reliability Enhancement

3D NoC Topology Synthesis

Topology Synthesis Algorithm

Features:

- Deadlock removal (routing and message-dependent) intra and inter layer
- Floorplan of cores, switches, NIs layer by layer
 - TSV alignment across layers is yet to be done
- Meet frequency, TSV constraints
- Design Trade-offs
 - Vary number of TSVs \rightarrow performance Vs yield analysis
 - Effect of core to layer assignment on communication
 - Effect of floorplaning on communication

Effect of TSV Constraint

Normalized with respect to unbounded resources case (which needs 13)

Links have 32bit payload

Effect of NoC Frequency

- With NoC frequency increase
 - Fewer links are needed to support same bandwidth → fewer TSVs needed
 - Smaller, more, switches are needed \rightarrow more TSVs needed
 - Trade-offs to be explored

Case Study

- 36 core multi-media benchmark
- Mapped onto 3 layers

Generated 3D Topology

Design Floorplan

Each core is assumed to be of dimension 1mmx1mm

Comparison with 2D NoC

Wire Length Distribution

3D design has many shorter wires

Conclusions

- 3D IC revolution is happening
 - "Evolutionary revolution"
- Adoption in high volumes will be slow
 - Technology needs time to mature
 - Cost needs to come down
- Architectural and circuit solutions can help
 - 3D-NoC could become a strategic technology

